Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38391966

RESUMEN

Cardiovascular diseases (CVDs), a group of disorders affecting the heart or blood vessels, are the primary cause of death worldwide, with an immense impact on patient quality of life and disability. According to the World Health Organization, CVD takes an estimated 17.9 million lives each year, where more than four out of five CVD deaths are due to heart attacks and strokes. In the decades to come, an increased prevalence of age-related CVD, such as atherosclerosis, coronary artery stenosis, myocardial infarction (MI), valvular heart disease, and heart failure (HF) will contribute to an even greater health and economic burden as the global average life expectancy increases and consequently the world's population continues to age. Considering this, it is important to focus our research efforts on understanding the fundamental mechanisms underlying CVD. In this review, we focus on cellular senescence and mitochondrial dysfunction, which have long been established to contribute to CVD. We also assess the recent advances in targeting mitochondrial dysfunction including energy starvation and oxidative stress, mitochondria dynamics imbalance, cell apoptosis, mitophagy, and senescence with a focus on therapies that influence both and therefore perhaps represent strategies with the most clinical potential, range, and utility.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Enfermedades Mitocondriales , Infarto del Miocardio , Humanos , Calidad de Vida , Senescencia Celular
3.
Front Immunol ; 14: 1177467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426649

RESUMEN

Background and aims: Preclinical data suggest that activation of the adaptive immune system is critical for myocardial repair processes in acute myocardial infarction. The aim of the present study was to determine the clinical value of baseline effector T cell chemokine IP-10 blood levels in the acute phase of ST-segment elevation myocardial infarction (STEMI) for the prediction of the left ventricular function changes and cardiovascular outcomes after STEMI. Methods: Serum IP-10 levels were retrospectively quantified in two independent cohorts of STEMI patients undergoing primary percutaneous coronary intervention. Results: We report a biphasic response of the effector T cell trafficking chemokine IP-10 characterized by an initial increase of its serum levels in the acute phase of STEMI followed by a rapid reduction at 90min post reperfusion. Patients at the highest IP-10 tertile presented also with more CD4 effector memory T cells (CD4 TEM cells), but not other T cell subtypes, in blood. In the Newcastle cohort (n=47), patients in the highest IP-10 tertile or CD4 TEM cells at admission exhibited an improved cardiac systolic function 12 weeks after STEMI compared to patients in the lowest IP-10 tertile. In the Heidelberg cohort (n=331), STEMI patients were followed for a median of 540 days for major adverse cardiovascular events (MACE). Patients presenting with higher serum IP-10 levels at admission had a lower risk for MACE after adjustment for traditional risk factors, CRP and high-sensitivity troponin-T levels (highest vs. rest quarters: HR [95% CI]=0.420 [0.218-0.808]). Conclusion: Increased serum levels of IP-10 in the acute phase of STEMI predict a better recovery in cardiac systolic function and less adverse events in patients after STEMI.


Asunto(s)
Infarto del Miocardio , Infarto del Miocardio con Elevación del ST , Humanos , Quimiocina CXCL10 , Corazón , Estudios Retrospectivos , Infarto del Miocardio con Elevación del ST/terapia
4.
J Clin Med ; 12(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37510939

RESUMEN

Acute myocardial infarction (MI) is the most common and dramatic complication of atherosclerosis, which, despite successful reperfusion therapy, can lead to incident heart failure (HF). HF occurs when the healing process is impaired due to adverse left ventricular remodelling, and can be the result of so-called ischaemia/reperfusion injury (IRI), visualised by the development of intramyocardial haemorrhage (IMH) or microvascular obstruction (MVO) in cardiac MRI. Thus far, translation of novel pharmacological strategies from preclinical studies to target either IRI or HF post MI have been largely unsuccessful. Anti-inflammatory therapies also carry the risk of affecting the immune system. Fractalkine (FKN, CX3CL1) is a unique chemokine, present as a transmembrane protein on the endothelium, or following cleavage as a soluble ligand, attracting leukocyte subsets expressing the corresponding receptor CX3CR1. We have shown previously that the fractalkine receptor CX3CR1 is associated with MVO in patients undergoing primary PCI. Moreover, inhibition of CX3CR1 with an allosteric small molecule antagonist (KAND567) in the rat MI model reduces acute infarct size, inflammation, and IMH. Here we review the cellular biology of fractalkine and its receptor, along with ongoing studies that introduce CX3CR1 as a future target in coronary artery disease, specifically in patients with myocardial infarction.

5.
Age Ageing ; 52(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37466640

RESUMEN

Cellular senescence has emerged as a fundamental biological mechanism underpinning the ageing process and has been implicated in the pathogenesis of an increasing number of age-related conditions. Cellular senescence is a cell fate originally defined as an irreversible loss of replicative potential although it is now clear that it can be induced by a variety of mechanisms independent of replication and telomere attrition. The drivers include a persistent DNA damage response causing multiple alterations in cellular function. Senescent cells secrete a range of mediators that drive chronic inflammation and can convert other cells to the senescent state-the senescence-associated secretory phenotype. Much research to date has been conducted in animal models, but it is now clear that senescent cells accompany ageing in humans and their presence is an important driver of disease across systems. Proof-of-concept work suggests that preventing or reversing senescence may be a viable strategy to counteract human ageing and age-related disease. Possible interventions include exercise, nutrition and senolytics/senostatic drugs although there are a number of potential limitations to the use of senotherapeutics. These interventions are generally tested for single-organ conditions, but the real power of this approach is the potential to tackle multiple age-related conditions. The litmus test for this exciting new class of therapies, however, will be whether they can improve healthy life expectancy rather than merely extending lifespan. The outcomes measured in clinical studies need to reflect these aims if senotherapeutics are to gain the trust of clinicians, patients and the public.


Asunto(s)
Senescencia Celular , Senoterapéuticos , Animales , Humanos , Senescencia Celular/fisiología , Envejecimiento/fisiología , Longevidad , Inflamación
6.
NPJ Aging ; 9(1): 15, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316516

RESUMEN

Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodelling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodelling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodelling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodelling by spreading senescence to other cell-types. Collectively this study presents the demonstration that senescent cardiomyocytes are major contributors to myocardial remodelling and dysfunction following a myocardial infarction. Therefore, to maximise the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimise senolytic strategies to target this cell lineage.

8.
Res Sq ; 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37090497

RESUMEN

Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodeling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodeling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodeling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodeling by spreading senescence to other cell-types. Collectively this study presents a novel demonstration that senescent cardiomyocytes are major contributors to myocardial remodeling and dysfunction following a myocardial infarction. Therefore, to maximize the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimize senolytic strategies to target this cell lineage.

9.
Subcell Biochem ; 103: 45-78, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37120464

RESUMEN

During ageing molecular damage leads to the accumulation of several hallmarks of ageing including mitochondrial dysfunction, cellular senescence, genetic instability and chronic inflammation, which contribute to the development and progression of ageing-associated diseases including cardiovascular disease. Consequently, understanding how these hallmarks of biological ageing interact with the cardiovascular system and each other is fundamental to the pursuit of improving cardiovascular health globally. This review provides an overview of our current understanding of how candidate hallmarks contribute to cardiovascular diseases such as atherosclerosis, coronary artery disease and subsequent myocardial infarction, and age-related heart failure. Further, we consider the evidence that, even in the absence of chronological age, acute cellular stress leading to accelerated biological ageing expedites cardiovascular dysfunction and impacts on cardiovascular health. Finally, we consider the opportunities that modulating hallmarks of ageing offer for the development of novel cardiovascular therapeutics.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Telomerasa , Humanos , Enfermedades Cardiovasculares/genética , Telomerasa/genética , Envejecimiento/genética , Senescencia Celular , Mitocondrias/genética
10.
Geroscience ; 45(4): 2689-2705, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37086366

RESUMEN

Myocardial infarction (MI) accelerates immune ageing characterised by lymphopenia, expansion of terminally differentiated CD8+ T-lymphocytes (CD8+ TEMRA) and inflammation. Pre-clinical data showed that TA-65, an oral telomerase activator, reduced immune ageing and inflammation after MI. We conducted a double blinded randomised controlled pilot trial evaluating the use of TA-65 to reduce immune cell ageing in patients following MI. Ninety MI patients aged over 65 years were randomised to either TA-65 (16 mg daily) or placebo for 12 months. Peripheral blood leucocytes were analysed by flow cytometry. The pre-defined primary endpoint was the proportion of CD8+ T-lymphocytes which were CD8+ TEMRA after 12 months. Secondary outcomes included high-sensitivity C-reactive protein (hsCRP) levels. Median age of participants was 71 years. Proportions of CD8+ TEMRA did not differ after 12 months between treatment groups. There was a significant increase in mean total lymphocyte count in the TA-65 group after 12 months (estimated treatment effect: + 285 cells/µl (95% CI: 117-452 cells/ µ l, p < 0.004), driven by significant increases from baseline in CD3+, CD4+, and CD8+ T-lymphocytes, B-lymphocytes and natural killer cells. No increase in lymphocyte populations was seen in the placebo group. At 12 months, hsCRP was 62% lower in the TA-65 group compared to placebo (1.1 vs. 2.9 mg/L). Patients in the TA-65 arm experienced significantly fewer adverse events (130 vs. 185, p = 0.002). TA-65 did not alter CD8+ TEMRA but increased all major lymphocyte subsets and reduced hsCRP in elderly patients with MI after 12 months.


Asunto(s)
Infarto del Miocardio , Telomerasa , Anciano , Humanos , Proteína C-Reactiva , Inflamación , Linfocitos T , Método Doble Ciego
11.
Biomedicines ; 10(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36551899

RESUMEN

There is significant interest in the role of stem cells in cardiac regeneration, and yet little is known about how cardiac disease progression affects native cardiac stem cells in the human heart. In this brief report, cardiac mesenchymal stem cell-like cells (CMSCLC) from the right atria of a 21-year-old female patient with a bicuspid aortic valve and aortic stenosis (referred to as biscuspid aortic valve disease BAVD-CMSCLC), were compared with those of a 78-year-old female patient undergoing coronary artery bypass surgery (referred to as coronary artery disease CAD-CMSCLC). Cells were analyzed for expression of MSC markers, ability to form CFU-Fs, metabolic activity, cell cycle kinetics, expression of NANOG and p16, and telomere length. The cardiac-derived cells expressed MSC markers and were able to form CFU-Fs, with higher rate of formation in CAD-CMSCLCs. BAVD-CMSCLCs did not display normal MSC morphology, had a much lower cell doubling rate, and were less metabolically active than CAD-CMSCLCs. Cell cycle analysis revealed a population of BAVD-CMSCLC in G2/M phase, whereas the bulk of CAD-CMSCLC were in the G0/G1 phase. BAVD-CMSCLC had lower expression of NANOG and shorter telomere lengths, but higher expression of p16 compared with the CAD-CMSCLC. In conclusion, BAVD-CMSCLC have a prematurely aged phenotype compared with CAD-CMSCLC, despite originating from a younger patient.

12.
Front Aging ; 3: 1058435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452034

RESUMEN

Cancer continues to place a heavy burden on healthcare systems around the world. Although cancer survivorship continues to improve, cardiotoxicity leading to cardiomyopathy and heart failure as a consequence of cancer therapy is rising, and yesterday's cancer survivors are fast becoming today's heart failure patients. Although the mechanisms driving cardiotoxicity are complex, cellular senescence is gaining attention as a major contributor to chemotherapy-induced cardiotoxicity and, therefore, may also represent a novel therapeutic target to prevent this disease. Cellular senescence is a well-recognized response to clinical doses of chemotherapies, including anthracyclines, and is defined by cell cycle exit, phenotypic alterations which include mitochondrial dysfunction, and the expression of the pro-senescent, pro-fibrotic, and pro-inflammatory senescence-associated phenotype. Senescence has an established involvement in promoting myocardial remodeling during aging, and studies have demonstrated that the elimination of senescence can attenuate the pathophysiology of several cardiovascular diseases. Most recently, pharmacology-mediated elimination of senescence, using a class of drugs termed senolytics, has been demonstrated to prevent myocardial dysfunction in preclinical models of chemotherapy-induced cardiotoxicity. In this review, we will discuss the evidence that anthracycline-induced senescence causes the long-term cardiotoxicity of anticancer chemotherapies, consider how the senescent phenotype may promote myocardial dysfunction, and examine the exciting possibility that targeting senescence may prove a therapeutic strategy to prevent or even reverse chemotherapy-induced cardiac dysfunction.

13.
Cardiovasc Drugs Ther ; 36(1): 187-196, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-32979174

RESUMEN

Ageing is the biggest risk factor for impaired cardiovascular health, with cardiovascular disease being the leading cause of death in 40% of individuals over 65 years old. Ageing is associated with both an increased prevalence of cardiovascular disease including heart failure, coronary artery disease, and myocardial infarction. Furthermore, ageing is associated with a poorer prognosis to these diseases. Genetic models allowing the elimination of senescent cells revealed that an accumulation of senescence contributes to the pathophysiology of cardiovascular ageing and promotes the progression of cardiovascular disease through the expression of a proinflammatory and profibrotic senescence-associated secretory phenotype. These studies have resulted in an effort to identify pharmacological therapeutics that enable the specific elimination of senescent cells through apoptosis induction. These senescent cell apoptosis-inducing compounds are termed senolytics and their potential to ameliorate age-associated cardiovascular disease is the focus of this review.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Senescencia Celular/efectos de los fármacos , Senoterapéuticos/farmacología , Anciano , Envejecimiento , Animales , Apoptosis/efectos de los fármacos , Enfermedades Cardiovasculares/fisiopatología , Progresión de la Enfermedad , Humanos , Pronóstico , Factores de Riesgo , Fenotipo Secretor Asociado a la Senescencia/fisiología
14.
Heart ; 107(23): 1881-1888, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34544804

RESUMEN

BACKGROUND AND AIM: Although the diagnostic usefulness of high-sensitivity cardiac troponin T (hs-cTnT) is well established in ST-segment elevation myocardial infarction (STEMI), its prognostic relevance in risk stratification of patients with STEMI remains obscure. This study sought to determine the prognostic value of pre-reperfusion (admission) and post-reperfusion (12-hour) hs-cTnT in patients with STEMI treated with primary percutaneous coronary intervention (PPCI). METHODS: Retrospective observational longitudinal study including consecutive patients with STEMI treated with PPCI at a university hospital in the northeast of England. hs-cTnT was measured at admission to the catheterisation laboratory and 12 hours after PPCI. Clinical, procedural and laboratory data were prospectively collected during patient hospitalisation (June 2010-December 2014). Mortality data were obtained from the UK Office of National Statistics. The study endpoints were in-hospital and overall mortality. RESULTS: A total of 3113 patients were included. Median follow-up was 53 months. Admission hs-cTnT >515 ng/L (fourth quartile) was independently associated with in-hospital mortality (HR=2.53 per highest to lower quartiles; 95% CI: 1.32 to 4.85; p=0.005) after multivariable adjustment for a clinical model of mortality prediction. Likewise, admission hs-cTnT >515 ng/L independently predicted overall mortality (HR=1.27 per highest to lower quartiles; 95% CI: 1.02 to 1.59; p=0.029). Admission hs-cTnT correctly reclassified risk for in-hospital death (net reclassification index (NRI)=0.588, p<0.001) and overall mortality (NRI=0.178, p=0.001). Conversely, 12-hour hs-cTnT was not independently associated with mortality. CONCLUSION: Admission, but not 12-hour post-reperfusion, hs-cTnT predicts mortality and improves risk stratification in the PPCI era. These results support a prognostic role for admission hs-cTnT while challenge the cost-effectiveness of routine 12-hour hs-cTnT measurements in patients with STEMI.


Asunto(s)
Intervención Coronaria Percutánea/métodos , Infarto del Miocardio con Elevación del ST/sangre , Troponina/sangre , Anciano , Biomarcadores/sangre , Inglaterra/epidemiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Infarto del Miocardio con Elevación del ST/mortalidad , Infarto del Miocardio con Elevación del ST/cirugía , Tasa de Supervivencia/tendencias , Factores de Tiempo
15.
Mech Ageing Dev ; 198: 111540, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34237321

RESUMEN

Ageing is the biggest risk factor for impaired cardiovascular health, with cardiovascular disease being the cause of death in 40 % of individuals over 65 years old. Ageing is associated with an increased prevalence of atherosclerosis, coronary artery stenosis and subsequent myocardial infarction, thoracic aortic aneurysm, valvular heart disease and heart failure. An accumulation of senescence and increased inflammation, caused by the senescence-associated secretory phenotype, have been implicated in the aetiology and progression of these age-associated diseases. Recently it has been demonstrated that compounds targeting components of anti-apoptotic pathways expressed by senescent cells can preferentially induce senescence cells to apoptosis and have been termed senolytics. In this review, we discuss the evidence demonstrating that senescence contributes to cardiovascular disease, with a particular focus on studies that indicate the promise of senotherapy. Based on these data we suggest novel indications for senolytics as a treatment of cardiovascular diseases which have yet to be studied in the context of senotherapy. Finally, while the potential benefits are encouraging, several complications may result from senolytic treatment. We, therefore, consider these challenges in the context of the cardiovascular system.


Asunto(s)
Envejecimiento , Proteínas Reguladoras de la Apoptosis/metabolismo , Enfermedades Cardiovasculares , Senescencia Celular , Senoterapéuticos/farmacología , Envejecimiento/inmunología , Envejecimiento/metabolismo , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Senescencia Celular/efectos de los fármacos , Senescencia Celular/fisiología , Humanos , Inflamación/metabolismo , Fenotipo Secretor Asociado a la Senescencia , Transducción de Señal/efectos de los fármacos
16.
Front Immunol ; 12: 605857, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34046028

RESUMEN

Aims: Latent cytomegalovirus (CMV) infection is associated with adverse cardiovascular outcomes. Virus-specific CX3CR1+ effector memory T-cells may be instrumental in this process due to their pro-inflammatory properties. We investigated the role of CX3CR1 (fractalkine receptor) in CMV-related lymphocyte kinetics and cardiac remodeling in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (pPCI). Methods and Results: We retrospectively analysed lymphocyte count, troponin, and survival in 4874 STEMI/pPCI patients, evaluated lymphocyte kinetics during reperfusion in a prospective cohort, and obtained sequential cardiac MRI (cMRI) to assess remodeling. Pre-reperfusion lymphopenia independently predicted mortality at 7.5 years. Prior to reperfusion, CCR7+ T-lymphocytes appeared to be depleted. After reperfusion, T-lymphocytes expressing CX3CR1 were depleted predominantly in CMV-seropositive patients. During ischaemia/reperfusion, a drop in CX3CR1+ T-lymphocytes was significantly linked with microvascular obstruction in CMV+ patients, suggesting increased fractalkine-receptor interaction. At 12 weeks, CMV+ patients displayed adverse LV remodeling. Conclusion: We show that lymphopenia occurs before and after reperfusion in STEMI by different mechanisms and predicts long-term outcome. In CMV+ patients, increased fractalkine induction and sequestration of CX3CR1+ T-cells may contribute to adverse remodeling, suggesting a pro-inflammatory pathomechanism which presents a novel therapeutic target.


Asunto(s)
Receptor 1 de Quimiocinas CX3C/genética , Infecciones por Citomegalovirus/complicaciones , Linfocitos/metabolismo , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Remodelación Ventricular , Anciano , Biomarcadores , Receptor 1 de Quimiocinas CX3C/metabolismo , Citomegalovirus , Infecciones por Citomegalovirus/virología , Femenino , Pruebas de Función Cardíaca , Humanos , Inmunofenotipificación , Linfocitos/inmunología , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/mortalidad , Receptores CCR7/metabolismo , Remodelación Ventricular/genética , Remodelación Ventricular/inmunología
17.
Arterioscler Thromb Vasc Biol ; 41(3): 1047-1061, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33504179

RESUMEN

Shortened telomeres have been linked to numerous chronic diseases, most importantly coronary artery disease, but the underlying mechanisms remain ill defined. Loss-of-function mutations and deletions in telomerase both accelerate telomere shortening but do not necessarily lead to a clinical phenotype associated with atherosclerosis, questioning the causal role of telomere length in cardiac pathology. The differential extranuclear functions of the 2 main components of telomerase, telomerase reverse transcriptase and telomerase RNA component, offer important clues about the complex relationship between telomere length and cardiovascular pathology. In this review, we critically discuss relevant preclinical models, genetic disorders, and clinical studies to elucidate the impact of telomerase in cardiovascular disease and its potential role as a therapeutic target. We suggest that the antioxidative function of mitochondrial telomerase reverse transcriptase might be atheroprotective, making it a potential target for clinical trials. Graphic Abstract: A graphic abstract is available for this article.


Asunto(s)
Enfermedades Cardiovasculares/enzimología , Enfermedades Cardiovasculares/terapia , Telomerasa/metabolismo , Animales , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Ensayos Clínicos como Asunto , Medicamentos Herbarios Chinos/uso terapéutico , Ejercicio Físico , Estudio de Asociación del Genoma Completo , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Leucocitos/enzimología , Ratones , Modelos Cardiovasculares , Mutación , ARN/genética , Telomerasa/sangre , Telomerasa/genética , Homeostasis del Telómero/fisiología , Acortamiento del Telómero/fisiología
18.
Aging Cell ; 19(10): e13249, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32996233

RESUMEN

A key component of cardiac ischemia-reperfusion injury (IRI) is the increased generation of reactive oxygen species, leading to enhanced inflammation and tissue dysfunction in patients following intervention for myocardial infarction. In this study, we hypothesized that oxidative stress, due to ischemia-reperfusion, induces senescence which contributes to the pathophysiology of cardiac IRI. We demonstrate that IRI induces cellular senescence in both cardiomyocytes and interstitial cell populations and treatment with the senolytic drug navitoclax after ischemia-reperfusion improves left ventricular function, increases myocardial vascularization, and decreases scar size. SWATH-MS-based proteomics revealed that biological processes associated with fibrosis and inflammation that were increased following ischemia-reperfusion were attenuated upon senescent cell clearance. Furthermore, navitoclax treatment reduced the expression of pro-inflammatory, profibrotic, and anti-angiogenic cytokines, including interferon gamma-induced protein-10, TGF-ß3, interleukin-11, interleukin-16, and fractalkine. Our study provides proof-of-concept evidence that cellular senescence contributes to impaired heart function and adverse remodeling following cardiac ischemia-reperfusion. We also establish that post-IRI the SASP plays a considerable role in the inflammatory response. Subsequently, senolytic treatment, at a clinically feasible time-point, attenuates multiple components of this response and improves clinically important parameters. Thus, cellular senescence represents a potential novel therapeutic avenue to improve patient outcomes following cardiac ischemia-reperfusion.


Asunto(s)
Senescencia Celular/fisiología , Daño por Reperfusión/metabolismo , Femenino , Humanos , Masculino
19.
Clin Sci (Lond) ; 134(17): 2243-2262, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32880386

RESUMEN

In the elderly population, pathological inflammation has been associated with ageing-associated diseases. The term 'inflammageing', which was used for the first time by Franceschi and co-workers in 2000, is associated with the chronic, low-grade, subclinical inflammatory processes coupled to biological ageing. The source of these inflammatory processes is debated. The senescence-associated secretory phenotype (SASP) has been proposed as the main origin of inflammageing. The SASP is characterised by the release of inflammatory cytokines, elevated activation of the NLRP3 inflammasome, altered regulation of acetylcholine (ACh) nicotinic receptors, and abnormal NAD+ metabolism. Therefore, SASP may be 'druggable' by small molecule therapeutics targeting those emerging molecular targets. It has been shown that inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and adverse cardiac remodelling. Therefore, the pathomechanism involving SASP activation via the NLRP3 inflammasome; modulation of NLRP3 via α7 nicotinic ACh receptors; and modulation by senolytics targeting other proteins have gained a lot of interest within cardiovascular research and drug development communities. In this review, which offers a unique view from both clinical and preclinical target-based drug discovery perspectives, we have focused on cardiovascular inflammageing and its molecular mechanisms. We have outlined the mechanistic links between inflammageing, SASP, interleukin (IL)-1ß, NLRP3 inflammasome, nicotinic ACh receptors, and molecular targets of senolytic drugs in the context of cardiovascular diseases. We have addressed the 'druggability' of NLRP3 and nicotinic α7 receptors by small molecules, as these proteins represent novel and exciting targets for therapeutic interventions targeting inflammageing in the cardiovascular system and beyond.


Asunto(s)
Envejecimiento , Inflamación/patología , Terapia Molecular Dirigida , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
20.
NPJ Aging Mech Dis ; 6: 3, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31993214

RESUMEN

Cytomegalovirus (CMV) seropositivity in adults has been linked to increased cardiovascular disease burden. Phenotypically, CMV infection leads to an inflated CD8 T-lymphocyte compartment. We employed a 8-colour flow cytometric protocol to analyse circulating T cells in 597 octogenarians from the same birth cohort together with NT-proBNP measurements and followed all participants over 7 years. We found that, independent of CMV serostatus, a high number of CD27-CD28+ CD8 EMRA T-lymphocytes (TEMRA) protected from all-cause death after adjusting for known risk factors, such as heart failure, frailty or cancer (Hazard ratio 0.66 for highest vs lowest tertile; confidence interval 0.51-0.86). In addition, CD27-CD28+ CD8 EMRA T-lymphocytes protected from both, non-cardiovascular (hazard ratio 0.59) and cardiovascular death (hazard ratio 0.65). In aged mice treated with the senolytic navitoclax, in which we have previously shown a rejuvenated cardiac phenotype, CD8 effector memory cells are decreased, further indicating that alterations in T cell subpopulations are associated with cardiovascular ageing. Future studies are required to show whether targeting immunosenescence will lead to enhanced life- or healthspan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...